www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Abschätzung von int(|f|dµ)
Abschätzung von int(|f|dµ) < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung von int(|f|dµ): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:19 Fr 08.11.2013
Autor: adefg

Aufgabe
Sei [mm] (\Omega,\mathcal A,\mu) [/mm] ein Maßraum mit einem endlichen Maß [mm] \mu [/mm] und [mm] f:\Omega\to\mathbb [/mm] R messbar. Dann gilt:
a) [mm] \sum_{n=1}^\infty \mu(\{|f|\geq n\}) \leq \int |f|d\mu\leq \mu(\Omega) [/mm] + [mm] \sum_{n=1}^\infty \mu(\{|f|\geq n\}) [/mm]
b) f ist genau dann [mm] \mu-integrierbar, [/mm] wenn die Reihe [mm] \sum_{n=1}^\infty \mu(\{|f|\geq n\}) [/mm] konvergiert.


Hallo,
ich stehe etwas auf dem Schlauch mit obiger Aufgabe, weil ich gar nicht so richtig weiß wie ich überhaupt ansetzen soll.
Jemand hat mir den Tipp gegben, dass ich für die a) die Menge
[mm] s_n [/mm] := [mm] |f|^{-1}([n,n+1)) [/mm] betrachten soll, weil ich dann für [mm] x\in s_n [/mm] die Abschätzung [mm] \sum_n n\cdot 1_{s_n}\leq [/mm] |f| < [mm] \sum_n (n+1)\cdot 1_{s_n} [/mm] erhalte und damit wohl weiterkommen soll.
Ich sehe nur überhaupt nicht, man von [mm] $x\in s_n$ [/mm] überhaupt auf diese Abschätzung kommt. Und wie kommt man von da weiter?
Kann mir da vielleicht jemand den ein oder anderen Tipp geben?

        
Bezug
Abschätzung von int(|f|dµ): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 11.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]